
Hans-Petter Halvorsen

https://www.halvorsen.blog

Week Assignment
Unified Modeling Language (UML)

1. Create UML diagrams for your part of
the system and the overall system.

2. Start Implement/Update Code
according to the UML Design

The UML diagrams with descriptions
should be part of the Requirements and
Design document(s): SRS/SDD →SRD

Week Assignment

Hans-Petter Halvorsen

https://www.halvorsen.blog

UML Design
& Modelling

Table of Contents

Requirements
Analysis

Design

Implementation

Testing

Maintenance

Planning
Deployment

SRS

SDD

STD

Code

Installation
Guides

User Guides

Gantt Chart

with ER Diagram, UML Diagrams, CAD Drawings

Test
Documentation

Software Requirements
Specifications

Software Design Documents
System Documentation

Test Plan

Project Planning

End-User
Documentation

System
Documentation

Software Test Documentation

SDP
Software Development

Plan

Gantt Chart

The Software
Development

Lifecycle
(SDLC)

Why spend time on
Requirements & Design?

Requirements

Design

Implementation

Testin
g

Deployment
Software Development Life Cycle (SDLC)

Cost per defects and changes

Typical Software Documentation

High-Level
Requirements and
Design Documents

User Manuals

System
Documentation

Installation Guides

Test Plans

Test Documentation

Detailed
Requirements and
Design Documents

ER Diagram (Database)
UML Diagrams (Code)

Ti
m

e
Start

Finish

How to Test/
What to Test

CAD Drawings, etc.

1. Planning

2. Testing

3. End-user
Documentation
(The people that
shall actually use
the software)

Technical Stuff

How to use it

How to install it

Proof that you have tested and that the
software works as expected

(The stakeholders, the
software team; architects,
UX designers, developers)

(QA people)

(Super User/ IT dep.)

WHAT
HOW

(End User)Pr
oj

ec
t M

an
ag

em
en

t (
Ga

nt
t C

ha
rt

, e
tc

.)

(SRS)
(SDD)

(STP)
(STD)

Software
Development Plan (SDP)

2.Requierements
/Design

Software Requirements & Design
Requirements (WHAT):
• WHAT the system should do
• Describe what the system should do with Words and Figures, etc.
• SRS – Software Requirements Specification

Software Design (HOW):
• HOW it should do it
• Examples: GUI Design, UML, ER diagram, CAD, etc.
• SDD – Software Design Document

Note! Many don't separate SRS and SDD documents but include everything in a
Requirements & Design Document (SRD).
èIn practice, Requirements and Design are inseparable.

SRS/SDD
Document(s)

Database
Diagram(s)

UML
Diagrams

Written High-Level
Requirements

System
Sketches, Flow

Charts, etc.

CAD Drawings

Diagrams as Figures
+ Descriptions of each

Diagrams as Figures
+ Overall Descriptions and
descriptions for each table

Diagrams as Figures
+ Descriptions of each

Design Sketches
-both System Arcitecture

and GUI mockups

Use Case Document?

etc.

etc.

Useful when your project involves hardware

Requirements Analysis

SRD

Documents

The following Documents should be “finished”*
within this Week Assignment!
• Software Development Plan (SDP)
• Software Requirements and Design (SRD)
– Including Database and UML modelling with textual

descriptions and explanations

*But they can and should be continuously updated throughout the project when changes occur

Hans-Petter Halvorsen

https://www.halvorsen.blog

UML Diagrams

Table of Contents

UML Diagrams
• The following UML diagrams for your system should be

created:
1. Use Case Diagrams
2. Sequence Diagrams
3. Class Diagrams

• UML Tools: We will use StarUML as our UML Tool
• Include the UML diagrams (with detailed descriptions!)

as part of your Requirements and Design Document
(SRD)

See Next Slides for more details...

Creating UML - A practical Approach

Written
Requirements

Use Case
DiagramsCreate Use Cases from your

written Requirements

A graphical/visual representation
of the Requirements

WHAT the system shall do

Sequence
Diagrams

HOW

WHAT

DESIGN

Typically create one Sequence
Diagram for each Use Case

Class
Diagram

You get the Class Names from
the different Sequence Diagrams

1
2

34

Create one Class Diagram that gives an overview of all
your classes and the relationship between them

HOW

Interactions between a
system and its environment

A sequence diagram is
an interaction diagram
that shows how objects
operate with one
another and in what
order

Why use UML?
• Design
– Forward Design: doing UML before coding. Makes it easier to

create the code in a structured manner
– Backward Design: doing UML after coding as documentation
– When doing changes in the Design, make sure to update the

Code according to the new Design
• Code
– Some Tools can Auto-generate Code from UML diagrams
– When doing changes in the Code, make sure to update the UML

Diagrams

Types of UML Diagrams

http://en.wikipedia.org/wiki/Unified_Modeling_Language

http://en.wikipedia.org/wiki/Unified_Modeling_Language

UML Diagrams
Main Diagrams:
• Requirements Analysis Phase (WHAT):

1. Use Case Diagrams
• Design Phase (HOW):

2. Sequence Diagrams (Typically one Sequence
diagram for each Use Case)

3. Class Diagrams (just one Class diagram in total, for
larger systems you may want to create several)

Use Case Diagram
• A Use Case diagram is a representation of a user's

interaction with the system
• It shows the relationship between the user and the

different use cases in which the user is involved.
• Think as an End User not a Programmer: How should the

user use the system?
• Use your list of Requirements (as stated in the SRS/SRD)

as a starting point for your Use Cases
• The Use Cases should start with a verb, e.g., ReadSensor,

RegisterPatient, ShowPatientData

Use Case
Diagram

http://en.wikipedia.org/wiki/Use_case

Use Case Example for a Restaurant:

A use case is a list of steps,
typically defining interactions
between a role (known in UML as
an "actor") and a system, to
achieve a goal.

The actor can be a human or an
external system.

Actor

Use Case

http://en.wikipedia.org/wiki/Use_case

Sequence Diagram
• A Sequence diagram is an Interaction Diagram

that shows how objects operate with one
another and in what order

• A Sequence diagram shows object interactions
arranged in time sequence.

• Focus on main Structure, not Details. The
details are done in Code

Sequence Diagram

http://en.wikipedia.org/wiki/Sequence_diagram

http://en.wikipedia.org/wiki/Sequence_diagram

Class Diagram
• A diagram that shows the structure of the

different Classes in a system
• It shows the relationships between the Classes
• It shows Methods and Properties for each Class

Class Diagram

21
http://en.wikipedia.org/wiki/Class_diagram

http://en.wikipedia.org/wiki/Class_diagram

UML Software

• MS Visio
• StarUML
• ...hundreds of different tools

https://en.wikipedia.org/wiki/List_of_Unified_M
odeling_Language_tools

https://en.wikipedia.org/wiki/List_of_Unified_Modeling_Language_tools

FURPS+
FURPS is an acronym representing a model for classifying software quality attributes
(functional and non-functional requirements):
• Functionality - Capability (Size & Generality of Feature Set), Reusability (Compatibility,

Interoperability, Portability), Security (Safety & Exploitability)
• Usability (UX) - Human Factors, Aesthetics, Consistency, Documentation,

Responsiveness
• Reliability - Availability (Failure Frequency (Robustness/Durability/Resilience), Failure

Extent & Time-Length (Recoverability/Survivability)), Predictability (Stability), Accuracy
(Frequency/Severity of Error)

• Performance - Speed, Efficiency, Resource Consumption (power, ram, cache, etc.),
Throughput, Capacity, Scalability

• Supportability -(Serviceability, Maintainability, Sustainability, Repair Speed) -
Testability, Flexibility (Modifiability, Configurability, Adaptability, Extensibility,
Modularity), Installability, Localizability

• + (extra) - Implementation, licenses, administration, interface to external systems, etc.
https://en.wikipedia.org/wiki/FURPS

https://en.wikipedia.org/wiki/FURPS

FURPS+ Examples of Questions you
may want to ask yourself

• Functionality - What the customer wants! Note that this includes
security-related needs.

• Usability - How effective is the product from the standpoint of the
person who must use it? Is it aesthetically acceptable? Is the
documentation accurate and complete?

• Reliability - What is the maximum acceptable system downtime? Are
failures predictable? Can we demonstrate the accuracy of results?
How is the system recovered?

• Performance - How fast must it be? What's the maximum response
time? What's the throughput? What's the memory consumption?

• Supportability - Is it testable, extensible, serviceable, installable, and
configurable? Can it be monitored?

http://agileinaflash.blogspot.no/2009/04/furps.html

http://agileinaflash.blogspot.no/2009/04/furps.html

FURPS+ in our Project

• You don't need to follow FURPS+ in your project
• We can use it as a tool/aid when creating the

Software Requirements Specifications in our
SRD document

• If you want, and find it useful, you can also
structure the requirements according to FURPS+

“Use Case Document”
• Purpose: Documenting Use Cases
• Textual documentation and explanations of your

Use Cases
• In our Project:
– We include UML diagrams and textual descriptions of

these diagrams in our SRD document
– “Fully dressed use case document”: We can use it as a

tool/aid when creating the diagrams, but it is not
needed

Use Case and Scrum (Agile)
• In Agile, we don't refer to requirements; instead, we talk

about stories. Stories are really reminders for customer
needs (requirements, in the general sense).

• The Team works closely together with the Product
Owner

• Less need for detailed descriptions and requirements
• Agile/Scrum uses User Stories instead (which could be

considered as a light version of Use Case)
• The User Stories are the base for the Product Backlog

and the Sprint Backlog

UML Summary
• You should create Design and Specifications (including UML) before

you start Coding
• But UML can also be used to document your code afterwards

(Reverse Engineering)
• UML diagrams is a general method/standard to do just that
• This makes it easier to create structured code
• A good way to document your code properly.
• Code refactoring: Use UML as part of the continuous code

improvements process
• Note! If you update the code, make sure to update the UML and vice

versa!
• An (non-graphical) alternative to UML Use Cases is User Stories

Hans-Petter Halvorsen

https://www.halvorsen.blog

Coding

Table of Contents

Coding
• Make the overall Code Structure according to the UML Design
• Start creating Classes, etc. according to your UML design
• It may be a good idea to create a Class Library (or another

form for API) that can be shared between your
applications/modules.

• Make sure that you code reflects the UML design regarding
classes, etc. If you update your code, you need to update the
UML diagrams and vice versa.

• It is important that we have a working software at all times
(so it can be reviewed, tested, etc.)! That is a basic
requirement in Scrum!

Hans-Petter Halvorsen

University of South-Eastern Norway
www.usn.no

E-mail: hans.p.halvorsen@usn.no
Web: https://www.halvorsen.blog

http://www.usn.no/
mailto:hans.p.halvorsen@usn.no
https://www.halvorsen.blog/

